Infinite data and few information for regional forecast:
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Introduction

In sectorial and regional forecasting it is cus-
tomary to deal with situations where data are
not suitable since: i) regional borders can pos-
sibly change; i71) the classification of economic
activities is periodically revised; ii7) the EU pol-
icy on updating methods and survey domains
is frequently re-adapted. Statistical tools can be
useful in strengthening the power of the mod-
els when multiple time series are handled at the
same time. When data are analyzed at a re-
gional level or with a limited history, the most
used techniques are those of classical time se-
ries analysis and strategies are available for re-
gional forecast aggregation but the results are
successful when time series are longer and com-
plete. However, if the data quality is not sat-
isfactory, a different strategy can be adopted
- namely the External Middle-Out Hierarchical
Forecasting (EMOHF) - which is based on a joint
use of multiple forecasts. It consists in perform-
ing one forecast at a regional level and another
one at a national level (external data), and then
obtaining from them a hierarchical conciliation,
resulting in a national estimate.
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Conclusions

In order to get more reliable estimates, when
there is few information for regional forecast-
ing, it can be necessary the use of data other
than that available for the specific analysis
at hand. In this application, when multiple
sources of data are managed, forecasts are bet-
ter (the 2007 national APE from regional aggre-
gation is 0.4%, the corresponding APE after rec-
onciliation is 0.1%). Moreover, national data are
often provided before the regional data, so that,
in the case of the employment level, the pro-
posed procedure allows for a reliable estimates
betore the official publication by national statis-
tics agencies.
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State Space models

Let ¢, b, T, and ¢ (0 < ¢ < 1) be respectively
the level term, the growth term, the forecast term
over the next h time periods, and the damping
parameter. ¢ and b can be combined, giving five
future trend patterns:

None N: 1Ty = ¢

Additive A: T}, = ¢ + bh

Additive damped Ay: T, = £+ (¢ + ¢? + ... + o")b

Multiplicative M: T}, = £b"

Multiplicative damped M,: T}, = £b(¢+¢"+.+¢")
The seasonal component is then matched with
the trend component.

Exponential Smoothing methods
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Then the automatically selected models are:
Simple, Double Exponential Smoothing (Brown) - (N, N);
Linear Exponential Smoothing (Holt) - (A, N);

Damped Additive Trend - (A4, N);
Additive Seasonal Smoothing (Winters) - (A4, A).

Let [;, b;, s; and m denote respectively the se-

ries level at time ¢, the slope at time ¢, the sea-

sonal component at time ¢ and the number of
seasons. Then is possible to express the Expo-

nential Smoothing equations (where o, 5%, 7,

¢ are constants, ¢, = ¢ + ¢* + ... + ¢" and

ht = [(h —1) mod m]+ 1).

Applications

The Italian employment level derived from the
aggregation of regional estimates is overesti-
mated (+0.3%) if compared with the forecast
obtained as a quarterly aggregation of external
national estimates.

Employment-persons, regional and national forecasts, aggregation and conciliation ratio, Italy, 2007-08

Year Aggregation (000) Conciliation

Region Quarter ratio
2007 22,941 22,875 0.997
2008 23,275 23,193 0.996

At European regional level the forecast EMOHF
is proportionally adjusted according to the na-
tional conciliation ratios.

Exponential Smoothing formulae

Methods Equations

N, N ly = ayy + (1 — a)ly_4q
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The State Space general equations are:

Yt = w(Xg—1) + 7(Xe—1)€s

Xt = f(X¢—1) + g(xe—1)es

where x; = (I, b, Sty St—ma1) s e = wW(Xe_1)
and with additive error r(x;—1) = 1. Assuming
additive i.i.d. errors e; ~ N(0,0°), let u; = 9; de-
note the one-step forecast of y; and ¢, = vy — 1y
the one-step forecast error at time ¢.

Considering the triplet £/, T, S (Error, Trend, Sea-
sonality), we can find the State Space models
for each Exponential Smoothing method (to sim-
plify the notation, we use g = a8%).

State Space equations with additive error

Models Equations
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Employment-persons aged 15-64, national forecasts, Italy, 1999-08
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Employment-persons aged 15-64, regional models, external conciliated forecasts, ex-post APE, by regions, 2007-08

2007 2008 Level Trend Weight/Damping/Seasonal
NUTS Ye APE Ye APE Model MAPE Par. P- Par. P- Par. P-
(000) expost (000) expost ETS(...) estim. value estim. value estim. value

ITC1 1,829 0.1% 1,842 A, A, N 0.82% 0.132 0.323 0.001 0.997
ITC2 55 1.6% 56 A, N, N 0.93% 0.971 0.000
ITC3 620 2.3% 624 A, A, N 1.06% 0.001 0.998 0.001 1.000
ITC4 4,250 0.4% 4,308 A, A, N 0.26% 0.276 0.049 0.001 0.975
ITD1 223 0.3% 225 A, A, N 1.11% 0.999 0.013 0.001 0.996
ITD2 215 2.4% 215 A, N, N 1.56% 0.999 0.006
ITD3 2,084 0.1% 2,110 A, A, N 0.46% 0.205 0.158 0.001 0.992
ITD4 510 0.7% 515 A, A, N 0.85% 0.129 0.342 0.001 0.998
ITD5 1,885 1.4% 1,907 A, A, N 0.45% 0.193 0.177 0.001 0.993
ITE1 1,519 0.3% 1,537 A, A, N 0.51% 0.188 0.204 0.001 0.994
ITE2 348 3.5% 353 A, A, N 0.86% 0.047 0.730 0.001 1.000
ITE3 640 0.1% 648 A, A, N 0.38% 0.267 0.166 0.001 0.986
ITE4 2,120 2.7% 2,152 A, A, N 0.55% 0.999 0.020 0.001 0.996
ITF1 499 0.9% 507 A, A, N 0.91% 0.216 0.221 0.001 0.993
ITEF2 108 2.7% 108 A, A, N 1.04% 0.001 0.993 0.001 1.000
ITF3 1,766 3.8% 1,769 A, Agq, N 1.24% 0.209 0.685 0.001 0.999 0.999 0.000
ITF4 1,276 0.5% 1,311 A, A, N 1.05% 0.999 0.000
ITF5 195 1.4% 197 A, A, N 1.35% 0.048 0.723 0.001 1.000
ITF6 622 4.3% 634 A, Aq, N 1.20% 0.192 0.665 0.001 0.999 0.999 0.000
ITG1 1,496 1.6% 1,519 A, A, N 0.58% 0.179 0.182 0.001 0.994
ITG2 613 1.3% 627 A, A, N 1.48% 0.179 0.162 0.001 0.993

IT 22,857 0.1% 23,193 0.8% A, ALA 0.37% 0.314 0.001 0.001 0.977 0.001 0.991
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Even if these models present non-significant parameters, an ex post investigation shows that
when the regional estimates are conciliated with the national estimates, the Absolute Percentage
Error (APE) is less than 4.3%. In a forecasting framework the use of exponential weights is a form
of prudential behaviour. When breakpoints are detected, significant parameters are obtained by
truncation of the time series (a model with intervention variable can also be used).

Employment-persons aged 15-64, national model (data 04Q2-07Q3), forecasts, ex post APE, by regions, 2007-08

2007 2008 Level Trend Seasonal
NUTS Ye APE Yo APE Model MAPE Par. P- Par. P- Par. P-
(000) expost (000) expost ETS(...) estim. value estim. value estim. value
IT 22,863 0.1% 23,144 0.6% A, A, A 0.38% 0.078 0.379 0.001 0.995 0.001 0.997




